Multi-scaling and mesoscopic structures
نویسنده
چکیده
Multi-scaling and the systematic investigation of mesoscopic structures represent a field of fruitful cooperation in physics, chemistry, mineralogy and life sciences. The increasing miniaturization of devices as well as the emphasis of recent research on microstructures with length scales of a few nanometres lead to paradigm changes that may impact not only on our scientific understanding of fine-grained structures but also on the way we will develop device materials in the future. Here the role of interfaces becomes more important, and developments in areas such as 'domain boundary engineering' are evidence of this scientific evolution. In addition, nano-porous materials are particularly important in geology and in the development of artificial bones and ultra-light metals. Some of these developments are reviewed in this paper.
منابع مشابه
Development of Multi-Stage Molding Methods for Manufacturing of Mesoscopic 3D Articulated Devices
3D articulated devices involve moving parts with significant out-of-plane motion. While manufacturing technologies exist for scaling down 2D articulated devices, a scalable and cost effective manufacturing method does not currently exist for making mesoscopic 3D articulated devices. Even though individual mesoscopic parts can be easily fabricated, assembling them into devices remains a major ch...
متن کاملScaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials.
The scaling laws describing the thermal conductivity in random networks of straight conducting nanofibers are derived analytically and verified in numerical simulations. The applicability of the scaling laws to more complex structures of interconnected networks of bundles in carbon nanotube (CNT) films and mats is investigated in mesoscopic simulations. The heat transfer in CNT materials is fou...
متن کاملSoft matter and fractional mathematics: insights into mesoscopic quantum and time-space structures
Recent years have witnessed a great research boom in soft matter physics. By now, most advances, however, are of empirical results or purely mathematical extensions. The major obstacle is lacking of insights into fundamental physical laws underlying fractal mesostructures of soft matter. This study will use fractional mathematics, which consists of fractal, fractional calculus, fractional Brown...
متن کاملNematic Liquids in Weak Capillary Poiseuille Flow: Structure Scaling Laws and Effective Conductivity Implications
Abstract. We study the scaling properties of heterogeneities in nematic (liquid crystal) polymers that are generated by pressure-driven, capillary Poiseuille flow. These studies complement our earlier drag-driven structure simulations and analyses. We use the mesoscopic Doi-Marrucci-Greco model, which incorporates excluded-volume interactions of the rod-like particle ensemble, distortional elas...
متن کامل